Polymer

Browse Polymer wholesalers, exporters, manufacturers, dealers & suppliers.

Plastic Polymers Suppliers

Plastic Polymers

Get Verified Sellers Of Plastic Polymers

Polymer Products Suppliers

Polymer Products

Get Verified Sellers Of Polymer Products

Seed Coating Polymer Suppliers

Seed Coating Polymer

Get Verified Sellers Of Seed Coating Polymer

Top Companies Around Polymer

Company Name State Address
CSK POLYMERS PRIVATE LIMITEDAndhra Pradesh25-37,KABELA 4TH CROSS VIJAYAWADA VIJAYAWADA AP IN 520012
SIWALIK POLYMERS PRIVATE LIMITEDDelhiB-5/168 , SAFDARJANG ENCLAVE NEW DELHI DL IN
TEJASRI POLYMERS AND PROCESSING PRIVATE LIMITEDAndhra Pradesh27/2/9 OPP.WATER TANK, JP ROAD BHIMAVARAM AP IN 534202
VEERAMACHANENI POULTRY FARMS PRIVATE LIMITEDAndhra Pradesh30-13-17, KOTHAVANTENA ROAD,DURGAAGRAHARAM, VIJAYAWADA-52. VIJAYAWADA-52. AP IN 520002
SAI SREENIVASA POLMERS PVT LTDAndhra PradeshPLOT NO. 30/31, PHASE NO. III,AUTONAGAR AUTONAGAR GUNTUR AP IN
PRATIK POLYMER PRODUCTS PVT LTDAndhra PradeshPLOT NO 79 & 80, 'E' BLOCK INDUSTRIAL DEVELOPMENT AREA, VISAKHAPATNAM VISAKHAPATNAM, ANDHRA PRADESH AP IN 500012
KRISHNAVENI POLYMERS PRIVATE LIMITEDAndhra PradeshD.NO.55-5-31, FLAT NO.128 129UPSTAIRS 2ND CROSS ROAD, AUTONAGAR,, VIJAYAWADA-7. AP IN
SRI RAMAKRISHNA PLASTICS PRIVATE LIMITEDAndhra PradeshPLOT D-22, INDL ESTATE VISAKHAPATNAM AP IN
SRI VENKATARAGHAVA POLYTHENE PVT LTDAndhra PradeshDUPADU VILLAGE,LAXMIPURAMPANCHAYAT,KALLUR MANDAL, KURNOOL DIST., A.P AP IN
POLYSACKS PVT.LTD.DelhiI-50,JANGPURA EXTENSION,NEWDELHI. DL IN

Polymer:


Polymer is a class of natural or synthetic substances composed of very large molecules, or macromolecules which are multiples of simpler chemical units called monomers.

Some acts about Polymer:

 

  • Many of the materials in living organisms are composed of Polymers including proteins, cellulose, and nucleic acids..
  • These are the basis of many minerals such as as diamond, quartz, and feldspar and man-made materials such as  as concrete, glass, paper, plastics, and rubbers.
  • Polymer can be classiied as an unspecified number of monomer units.
  • The compound is sometimes called a high polymer when the number of monomers is very large.
  • Although most natural and synthetic polymers, however, are made up of two or more different types of monomers, some natural polymers are composed of one kind of monomer.
  • Polymers are available in a wide range from synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function.
  • Both natural and synthetic polymere are created through polymerization of many small molecules, known as monomers. 
  • A unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency can be produced by their consequently large molecular mass, relative to small molecule compounds to form amorphous and semicrystalline structures rather than crystals

Types of Polymer:


Naturally occurring and synthetic or man made are two types of polymer.


Natural Polymers:

 

  • Natural Polymers can be either organic or inorganic.
  • Organic polymers provide basic structural materials and play a crucial role in living things by participating in vital life processes.
  • The solid parts of all plants are made up of polymers which include cellulose, lignin, and various resins.
  • Cellulose is a variety of other natural polymers which is the main constituent of wood and paper.
  • Cellulose is a polysaccharide, which is a polymer composed of sugar molecules, Lignin composed of a complicated three-dimensional network of polymers and wood resins are polymers of a simple hydrocarbon, isoprene.
  • Rubber is another familiar isoprene polymer.
  • Proteins are other important natural polymers which are polymers of amino acids, and the nucleic acids. These are polymers of nucleotides which are complex molecules composed of nitrogen containing bases, sugars, and phosphoric acid. 
  • Genetic information is carried by nucleic acids in the cell.
  • Starches are natural polymers composed of glucose which are important sources of food energy derived from plants.
  • Many inorganic polymers such as diamond and graphite are also found in nature.
  • Both of inorganic polymers are composed of carbon. 
  • Carbon atoms are linked in a three-dimensional network in diamond that gives the material its hardness.
  • The carbon atoms are used as a lubricant in graphite.
  • Hemp, shellac, amber, wool, silk, and natural rubber are some examples of Natural polymeric materials.

Synthetic polymers:

 

  • Synthetic polymers can be produced in different types of reactions.
  • Polyethylene, polypropylene, polystyrene, polyvinyl chloride, synthetic rubber, phenol formaldehyde resin (or Bakelite), neoprene, nylon, polyacrylonitrile, PVB, and silicone are some of the polymers.
  • Simple hydrocarbons, such as propylene and ethylene can be transformed into polymers by adding monomer one by one to the growing chain.
  • Polyethylene is an addition polymer that is composed of repeating ethylene monomers. It may consist of 10,000 monomers joined in long coiled chains.
  • Polyethylene is translucent, crystalline and thermoplastic.
  • It can be used for coatings, packaging, molded parts, and the manufacture of bottles and containers as it softens when heated.
  • Polypropylene may consist of from 50,000 to 200,000 monomers and is also crystalline and thermoplastic but is harder than polyethylene.
  • Polypropylene can be used in the textile industry and to make molded objects.
  • Polybutadiene, polyisoprene, and polychloroprene, are other addition polymers which are all important in the manufacture of synthetic rubbers.
  • Some polymers, such as polystyrene, are thermoplastic and are glassy as well as transparent at room temperature.
  • Polystyrene can be used in the manufacture of toys and other plastic objects as it can be coloured any shade.
  • Vinyl chloride is produced if one hydrogen atom in ethylene is replaced by a chlorine atom.
  • Vinyl chloride polymerizes to polyvinyl chloride (PVC), which is a colourless, hard, tough, thermoplastic material and can be manufactured in a number of forms, including films, foams and fibres.
  • Vinyl acetate can be produced by the reaction of ethylene and acetic acid.
  • Vinyl acetate polymerizes to amorphous, which is a soft resins used as coatings and adhesives.
  • A large family of thermoplastic materials can be produced when Vinyl acetate copolymerizes with vinyl chloride.
  • Polymers may contain oxygen or nitrogen atoms, along with carbon atoms in the backbone chain.
  • Polyacetals are among such macromolecular materials with oxygen atoms.
  • Polyformaldehyde is the simplest polyacetal which has a high melting point and is crystalline and resistant to abrasion and the action of solvents.
  • Acetal resins are used in the manufacture of machine parts such as gears and bearings as these are more like metals than are any other plastics.
  • Polyester is a linear polymer that are characterized by a repetition of ester groups along the backbone chain.
  • Open-chain polyesters are thermoplastic materials which are colourless, and crystalline.
  • Polyesters with high molecular weights can be used in the manufacture of films, molded objects, and fibres such as Dacron.
  • The polyamides are the naturally occurring proteins casein, that are found in milk, and zein, which found in corn (maize).
  • Plastics, fibres, adhesives, and coatings can be made from these compounds.
  • Urea-formaldehyde resins are among the synthetic polyamides, which are thermosetting.
  • These can be used to produce molded objects and as adhesives and coatings for textiles and paper.
  • Polyamide resins known as nylons are strong, resistant to heat and abrasion, noncombustible, and nontoxic.
  • They can be used as textile fibres as they can be colored. However, they are also used in many other applications.
  • Linear repetitions of the urethane group is another important family of synthetic organic polymers.
  • Polyurethanes can be used in making elastomeric fibres known as spandex and also in the production of coating bases and soft and rigid foams.
  • The mixed organic-inorganic compounds are different class of polymers.
  • Silicones are the most important representatives of this polymer family which consists of alternating silicon and oxygen atoms with organic groups attached to each of the silicon atoms.
  • Oils and greases are silicones with low molecular weight.
  • Versatile elastic materials are higher-molecular-weight species of silicone that remain soft and rubbery at very low temperatures as well as relatively stable at high temperatures.
  • Fluoropolymers, are fluorocarbon containing polymers which are made up of carbon and fluorine bonds. These are highly stable and render the compound resistant to solvents.
  • A nonstick quality to fluoropolymers is further imparted by the nature of carbon and fluorine bonding which is most widely evident in the polytetrafluoroethylene (PFTE) Teflon.

Polymer chemistry:

 

  • Polymers can be designed and synthesized that vary in hardness, flexibility, softening temperature, solubility in water, and biodegradability.
  • Polymeric materials can be produced that are as strong as steel yet lighter and more resistant to corrosion.
  • Plastic pipe such as oil, natural gas, and water pipelines can be constructed.
  • Plastic components can be used by automakers to build lighter vehicles that consume less fuel.
  • Textiles, rubber, paper, and packaging materials are also built upon polymer chemistry.
  • Special catalysts are also developed that are required by the large-scale industrial synthesis of commercial polymers.

Properties of Polymer:

 

  • The properties of Polymer depends on their structure and they are divided into classes according to their physical basis.
  • The way a polymer behaves as a continuous macroscopic material is described by many physical and chemical properties.
  • Mechanical properties:
  • Mechanical properties are the properties that tells how the polymer actually behaves on a macroscopic scale.
  • The tensile strength of a material defines how much elongating stress the material will go through before failure which is very important in applications that rely upon the physical strength or durability of a polymer.
  • Generally, tensile strength of a polymer increases with polymer chain length and crosslinking of polymer chains.
  • Young's modulus defines the elasticity of the polymer. It is defined as the ratio of rate of change of stress to strain for small strains. It is strongly dependent on temperature
  • Viscoelasticity is described by a complex time dependent elastic response, which will show hysteresis in the stress-strain curve when the load is removed.
  • This complex modulus is measured by Dynamic mechanical analysis or DMA by oscillating the load and measuring the resulting strain as a function of time.
  • Transport properties such as diffusivity is how rapidly molecules move through the polymer matrix which are very important in many applications of polymers for films and membranes.
  • Reptation is a process of the movement of individual macromolecules in which each chain molecule is constrained by entanglements with neighboring chains to move within a virtual tube.
  • Polymer molecule dynamics and viscoelasticity can be explained by the theory of reptation.
  • Polymers may be either semi-crystalline or amorphous depending on their chemical structures.
  • All polymers including amorphous and semi-crystalline go through glass transitions. 
  • The glass-transition temperature (Tg) is an important physical parameter for polymer manufacturing, processing, and use.
  • The degree of branching or crosslinking in the polymer can be altered or plasticizers can be added to produce the glass-transition temperature.
  • Molecular motions are frozen and polymers are brittle and glassy below glass-transition temperature where as molecular motions are activated and polymers are rubbery and viscous above the glass-transition temperature.
  • The features of second-order phase transitions such as discontinuity in the heat capacity is shared by the glass transition.
  • Polymeric mixtures are less miscible than mixtures of small molecule materials as the driving force for mixing is usually entropy, not interaction energy.
  • Free energy associated with increasing the amount of volume available to each component as miscible materials usually form a solution because of an increase in entropy
  • The glass-transition temperature decreases and  polymer flexibility increases because of Inclusion of plasticizers.
  • Dependence of the glass-transition temperature Tg on the cooling rate can also be modified by addition of the plasticizer.
  • The mobility of the chain can further change if the molecules of plasticizer give rise to formation of hydrogen bonding.
  • Generally, these are small molecules that are chemically similar to the polymer and create gaps between polymer chains for greater mobility and fewer interchain interactions.
  • The properties of polymer can be determined by the attractive forces between polymer chains.
  • They have many such interchain interactions per molecule as polymer chains are so long.
  • The polymer can have ionic bonding or hydrogen bonding between its own chains with different side groups on the polymer resulting in higher tensile strength and higher crystalline melting points.
  • Polymers such as PMMA and HEMA:MMA, also known as solid-state dye-doped polymer lasers are used as matrices in the gain medium of solid-state dye lasers,
  • The laser properties are dominated by the laser dye used to dope the polymer matrix as these polymers have a high surface quality and are also highly transparent
  • Very narrow linewidths can be produced by the class of organic lasers which is useful for spectroscopy and analytical applications.

Applications of Polymer:

 

  • Synthetic polymers are used in most of the applications now a days because of their unique properties: low density, low cost, good thermal/electrical insulation properties, high resistance to corrosion, low-energy demanding polymer manufacture and facile processing into final products.
  • The properties of a polymer can be modified or enhanced by combination with other materials for a given application.
  • Polymeres are used in clothing, sportswear and accessories as polyester and PVC clothing, sport shoes, wetsuits, spandex, footballs and billiard balls, skis and snowboards, rackets, parachutes, sails, tents and shelters.
  • In electronic and photonic technologies, they are used as organic field effect transistors (OFET), light emitting diodes (OLED) and solar cells, television components, compact discs (CD), photoresists, and holography.
  • Polymers are used as films, bottles, food packaging, and barrels in packaging and containers.
  • In insulation, they are used as electrical and thermal insulation, spray foams.
  • Polymers are used in construction and structural applications such as garden furniture, PVC windows, flooring, sealing, pipes.
  • They can be used as paints, glues and lubricants such as varnish, adhesives, dispersants, anti-graffiti coatings, antifouling coatings, non-stick surfaces, and lubricants.
  • Car parts such as tires, bumpers, windshields, windscreen wipers, fuel tanks, car seats can be made of polymere.
  • Household items such as buckets, kitchenware, toys; Medical applications such as blood bag, syringes, rubber gloves, surgical suture, contact lenses, prosthesis, controlled drug delivery and release, matrices for cell growth; Personal hygiene and healthcare such as diapers using superabsorbent polymers, toothbrushes, cosmetics, shampoo, condoms can be made of polymers.
  • Polymers can be used in the manufacturing of security items such as personal protective equipment, bulletproof vests, space suits, ropes.
  • Separation technologies such as synthetic membranes, fuel cell membranes, filtration, ion-exchange resins uses ploymer.
  • Polymer banknotes and payment cards are also available.
  • These are also used in 3D printing.

A polymer is a big molecule made up of multiple subunits that is one of the most widely utilised materials on the planet. Chemical resistance and electrical and thermal insulation are two properties of polymers. Textile, toy, stationary, package construction, and other sectors use these materials. In India, you can become a distributor and wholesale supplier of polymer, biodegradable polymers, natural polymers, synthetic polymers, biopolymers, thermoplastic polymer, linear polymer, polymer products, and other polymer-related items. Submit an inquiry to become a well-known Polymers distributor.

Enquire for Polymer Suppliers Anywhere In India


Getatoz have Polymer suppliers at major parts of India including Bahraich, Tiruvethipuram, Narkatiaganj, Kullu, Faridkot, Sholingur, Makhdumpur, Anjangaon, Pudukkottai, Mahendragarh, Rath, Achalpur, Ajmer, Nahan, Alirajpur, Phagwara, Longowal, Samalkha, Dhanbad, Mariani, Kharar, Mandi, Sirsi, Robertson Pet, Padmanabhapuram, Khair, Sattur, Nuzvid, Tarbha, Srirampore, Kailasahar, Mahe, O' Valley, Sundarnagar, Bhainsa, Morshi, Goalpara, Palampur, Rajnandgaon, Raghogarh Vijaypur, Ranaghat, Warisaliganj, Rayagada, Sira, Savarkundla, Sasvad, Medinipur, Bhiwandi, Pasan, Pathardi and other localities of India as well and Polymer suppliers near you.


Use Getatoz to find the best Polymer suppliers for your need. We've helped thousands of businesses choose the right Polymer suppliers, stockists, distributors, super stockists & sub stockists.

Use Getatoz to find Polymer buyer & importers from India & abroad.

Polymer Suppliers Across World


Browse Polymer suppliers across the globe including Guam, Mauritania, Trinidad and Tobago, Qatar, East Timor, Botswana, Mongolia, Turkey, Zimbabwe, Croatia, Kuwait, Aruba, Macao, The Democratic Republic of Congo, Tonga, Benin, Hong Kong, United Arab Emirates, Norway, South Sudan, Russian Federation, Liberia, Dominican Republic, New Caledonia, Timor-Leste, Israel, Germany, Micronesia, Federated States of, Kyrgyzstan, Palau, Western Sahara, Swaziland, Saint Helena, Bulgaria, Iran, France, Greenland, Ethiopia, Bermuda, North Korea, Uganda, Latvia, Isle of Man, Puerto Rico, Uzbekistan, Oman, Colombia, Togo, Sudan, Argentina and other localities of World as well..


How can Getatoz help in getting the best Polymer Wholesalers near you?

You can browse Polymer Wholesalers on the basis of your location. Submit your requirement and suppliers will contact you with their best price offers for Polymer. Getatoz have some of the Best Polymer Suppliers of 2022

Post Requirement